Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
نویسندگان
چکیده
Almost all multi-agent reinforcement learning algorithms without communication follow the principle of centralized training with decentralized execution. During training, agents can be guided by same signals, such as global state. However, lack shared signal and choose actions given local observations during Inspired viewpoint invariance contrastive learning, we propose consensus for cooperative in this study. Although based on observations, different infer discrete spaces communication. We feed inferred one-hot to network an explicit input a way, thereby fostering their spirit. With minor model modifications, our suggested framework extended variety algorithms. Moreover, carry out these variants some fully tasks get convincing results.
منابع مشابه
Reinforcement Learning in Cooperative Multi–Agent Systems
Reinforcement Learning is used in cooperative multi–agent systems differently for various problems. We provide a review on learning algorithms used for repeated common–payoff games, and stochastic general– sum games. Then these learning algorithms is compared with another algorithm for the credit assignment problem that attempts to correctly assign agents the awards that they deserve.
متن کاملArgumentation Accelerated Reinforcement Learning for Cooperative Multi-Agent Systems
Multi-Agent Learning is a complex problem, especially in real-time systems. We address this problem by introducing Argumentation Accelerated Reinforcement Learning (AARL), which provides a methodology for defining heuristics, represented by arguments, and incorporates these heuristics into Reinforcement Learning (RL) by using reward shaping. We define AARL via argumentation and prove that it ca...
متن کاملCooperative Multi-Agent Reinforcement Learning for Low-Level Wireless Communication
Traditional radio systems are strictly co-designed on the lower levels of the OSI stack for compatibility and efficiency. Although this has enabled the success of radio communications, it has also introduced lengthy standardization processes and imposed static allocation of the radio spectrum. Various initiatives have been undertaken by the research community to tackle the problem of artificial...
متن کاملLevels of Realism for Cooperative Multi-Agent Reinforcement Learning
Training agents in a virtual crowd to achieve a task can be accomplished by allowing the agents to learn by trial-and-error and by sharing information with other agents. Since sharing enables agents to potentially reach optimal behavior more quickly, what type of sharing is best to use to achieve the quickest learning times? This paper categorizes sharing into three categories: realistic, unrea...
متن کاملMulti-Agent Reinforcement Learning
This thesis presents a novel approach to provide adaptive mechanisms to detect and categorise Flooding-Base DoS (FBDoS) and Flooding-Base DDoS (FBDDoS) attacks. These attacks are generally based on a flood of packets with the intention of overfilling key resources of the target, and today the attacks have the capability to disrupt networks of almost any size. To address this problem we propose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2023
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v37i10.26385